

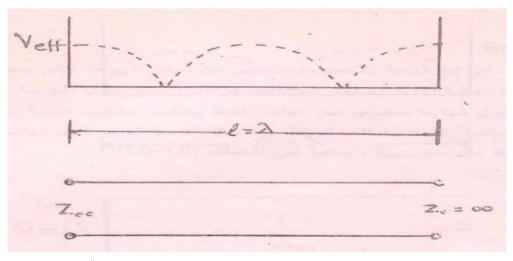
كلية العلوم

قسم الفيزياء درانيا مسلم داود عدد الوحدات: -2

(Open Circuit Load (OC)) خط الدائرة المفتوحة -1

يمتاز هذا الخط بكون الموجات المرسلة من المصدر تعاني ارتداد كامل لانه لايوجد حمل لاستهلاك هذه الطاقة وتكون الفولتية عند نهاية الخط اعظم مايمكن، بينما يتلاشكي التيار، اما الموجة المستقرة فتكون اكبر مايمكن.

في هذه الحالة ($Z_r=\infty$) وكذلك ($Z_{in}=Z_{oc}$) وتسمى ممانعة الدائرة المفتوحة من معادلة ($Z_{in}=Z_{in}$) يمكن إيجاد Z_{in} بضرب المعادلة ب Z_{in} 0 لنحصل على:-


$$Z_{in}=Z_{0} \frac{Z_{r}+j\tan \beta l}{1+jZ_{r}\tan \beta l}$$
(74)
$$Z_{oc}=Z_{0} \frac{1+\frac{j\tan \beta l}{Z_{r}}}{\frac{1}{Z_{r}}+j\tan \beta l}$$
(75)
$$Z_{oc}=-jZ_{0}\cot \beta l$$
(76)

نلاحظ ان Z_{oc} قيمة خيالية وهي ذات طابع سعوي. ويكون شكل خط النقل وهيكل الموجة الواقفة كما في الشكل (3–8).

كلية العلوم

قسم الفيزياء د.رانيا مسلم داود عدد الوجدات: -2

الشكل (3-8):- رسم توضيحي يبين خط الدائرة المفتوحة

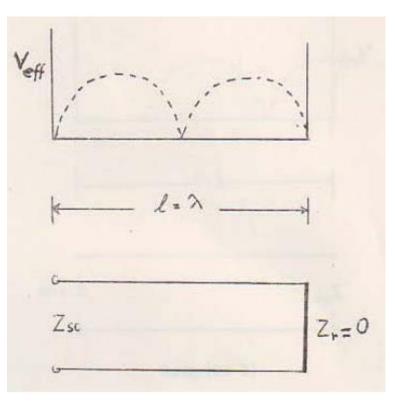
2- خط الدائرة القصيرة (Short Circuit Load (SC))

كما في الحالة السابقة يحدث ايضا ارتداد كامل للموجات على طول خط النقل، غير ان الفولتية في نهاية الخط تتلاشى، اما التيار والموجة المستقرة (standing wave) فيكونان اكبر مايمكن.

في هذه الحالة ($Z_r=0$) وكذلك ($Z_{in}=Z_{sc}$) وتسمى ممانعة الدائرة القصيرة. ويكون شكل خط النقل وهيكل الموجة الواقفة كما في الشكل ($S_r=0$).

من معادلة (74) يمكن ان نحصل على:-

$$Z_{sc} = jZ_0 \tan \beta l \qquad \dots (77)$$


كلية العلوم

قسم الفيزياء د.رانيا مسلم داود عدد الوحدات: -2

نلاحظ من الشكل (9-3) أن الفولتية في نهاية الخط تساوي صفر وذلك لأن الممانعة تساوي صفر أيضا". وإن Z_{sc} قيمة خيالية وهي ذات طبيعة حثية.

وعند ضرب طرفي المعادلتين (76) و (77) ببعضهما البعض نحصل على:-
$$Z_0 = \sqrt{Z_{oc}Z_{sc}} \qquad(78)$$

من هنا نستنتج أن الممانعة المميزة لخط النقل تساوي المعدل الهندسي لممانعتي الخط المفتوح والخط القصير.

الشكل (3-9):- رسم توضيحي يبين خط الدائرة القصيرة

كلية العلوم

قسم الفيزياء د.رانيا مسلم داود عدد الوحدات: -2

عندما یکون خط النقل منتهی بدائرة قصیرة $(Z_r=0)$ فان موضع اول نهایة صغری یقع عند نهایة الخط، اما عندما ینتهی خط النقل بدائرة مفتوحة $(\infty=7)$ فان موضع اول نهایة صغری یقع علی مسافة مقدارها $(\frac{\lambda}{4})$ عن نهایة الخط. ای ان قیمة (Z_r) عندما تتغیر من (Z_r) الی (Z_r) فان بعد اول نهایة صغری عن نهایة الخط یتغیر من (Z_r) الی (Z_r) الی (Z_r) عندما تغیر من (Z_r) الی (Z_r) فان بعد اول نهایة صغری عن نهایة الخط یتغیر من (Z_r) الی (Z_r) الی

اي ان بعد اول نهاية صعرى عن نهاية الخطيتغير بتغير قيمة (Z_r) ويمكن اعتبارة مقياسا" لممانعة الحمل.

سنفرض ان (S_{min}) تمثل المسافة من نهاية الخط الى اول نهاية صغرى وهي تناظر (S_{min}) سنفرض ان (S_{min}) يمتفاد منه في قياس كلا" في معادلة $(\psi - 2\beta s_m = (2m+1)\pi)$ يمتفاد منه في قياس كلا" من (Z_r) وطور معامل الانعكاس، حيث ان (Z_r) هي المسافة التي تكون فيها (Z_r)

$$\psi - 2\beta s_m = (2m + 1)\pi$$

at m=0 \rightarrow $s_{min} = s_0$

$$\psi - 2\beta s_{min} = \pi$$

$$\therefore \ \psi = \pi + 2\beta s_{min}$$

العلاقة اعلاه دائما تعطينا قيمة (Smin) سالبة اي باتجاة المولد (back ward).

$$\psi = \pi + \frac{4\pi}{\lambda} s_{min}$$
(79)(79) من المعادلة اعلاه يمكن حساب قيمة زاوية الطور لمعامل الانعكاس (ψ) بعد معرفة

كلية العلوم

قسم الفيزياء د.رانيا مسلم داود عدد الوحدات: -2

H.W

خط نقل ممانعته المميزة تساوي Ω 0، وجد أن سرعة الموجة التي ينقلها هذا الخط تساوي سرعة الضوء في الفراغ. جد كلا من المحاثة لوحدة الطول والسعة لوحدة الطول لهذا الخط.

نسبة الموجة الواقفة (SWR):-

ان الموجات المستقرة (والتي هي محصلة التداخل بين الموجات المرسلة والموجات المرتدة) على خط النقل تكون مرتبطة بالفرق بين قيمتي (Z_r و Z_0) وإن النسبة بين اعظم فولتية (SWR) واقل فولتية (V_{min}) للموجة المستقرة تدعى بنسبة فولتية الموجة الواقفة (V_{max}) او معامل الموجة المستقرة وهو:-

$$SWR = \frac{V_{max}}{V_{min}}$$
(80)

ويستفاد منه في قياس كفاءة نقل الطاقة عبر خط النقل وكما يلي :-

- عندما SWR=1
 ightharpoonup عندما SWR=1 عندما عملية وليست عملية
 - عندما $1.5 \geq \mathrm{SWR} > 1$ عندما $1.5 \geq \mathrm{SWR} > 1$ عندما
 - عندما SWR > 2
 ightharpoonup عندما عندما SWR > 2 عندما

رقم المقرر:- ف420

اسم المقرر: - المايكروويف

عدد الوحدات:-2

د.رانيا مسلم داود قسم الفيزياء

(reflection coefficient (ho)) معامل الانعكاس

هو النسبة بين فولتية الموجة المنعكسة والساقطة ويعد معامل الارتداد من الخصائص المميزة لخط النقل ويستخدم لقياس كفاءة خط النقل بحيث انه كلما زادت قيمة معامل الانعكاس دل ذلك على انخفاض كفاءة النقل والعكس صحيح كما يلى-

$$\rho = \frac{V_R}{V_T} = \frac{Z_T - Z_0}{Z_T + Z_0} \qquad(81)$$

اذا كانت قيمة (SWR) معروفة فيمكن حساب قيمة (ρ) من العلاقة التالية:-

$$\left|\rho\right| = \frac{\text{SWR}-1}{\text{SWR}+1} \qquad \dots (82)$$

وبالعكس فاذا كانت قيمة (ρ) معروفة فانه:-

$$SWR = \frac{1+|\rho|}{1-|\rho|} \qquad(83)$$

H.W.

جامعة البصرة

كلية العلوم

♦ اثبت ان

$$SWR = \frac{Z_r}{Z_0}$$

كلية العلوم

قسم الفيزياء درانيا مسلم داود عدد الوحدات: -2

 \bullet إذا كان طول خـط النقـل كبيـراً جـداً فإن $ho \to 0$ و $ho \to 1$ أي أن الموجة التي تسقط ستتلاشى ولن ينعكس منها شيء.